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ABSTRACT

Context. Oscillations are abundant in the solar corona. Coronal loop oscillations are typically studied using highly idealised models
of magnetic flux tubes. In order to improve our understanding of coronal oscillations, it is necessary to consider the effect of realistic
magnetic field topology and density structuring.
Aims. We analyse the damping of coronal oscillations using a self-consistent 3D radiation-MHD simulation of the solar atmosphere
spanning from the convection zone into the corona, the associated oscillation dissipation and heating, and finally the physical processes
responsible for the damping and dissipation. The simulated corona formed in such a model does not depend on any prior assumptions
about the shape of the coronal loops.
Methods. We analyse the evolution of a bundle of magnetic loops by magnetic field tracing.
Results. We find that the bundle of magnetic loops shows damped transverse oscillations in response to perturbations in two separate
instances with oscillation periods of 177 s and 191 s, velocity amplitudes of 10 km s−1 and 16 km s−1 and damping times of 176 s
and 198 s, respectively. The coronal oscillations lead to the development of velocity shear in the simulated corona resulting in the
formation of vortices seen in the velocity field caused by the Kelvin-Helmholtz instability, contributing to the damping and dissipation
of the transverse oscillations.
Conclusions. The oscillation parameters and evolution observed are in line with the values typically seen in observations of coronal
loop oscillations. The dynamic evolution of the coronal loop bundle suggests the models of monolithic and static coronal loops with
constant lengths might need to be re-evaluated by relaxing the assumption of highly idealised waveguides.
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1. Introduction

Coronal structures act as waveguides for a variety of MHD os-
cillation modes (Nakariakov & Verwichte 2005; Nakariakov &
Kolotkov 2020). There is extensive observational evidence that
transverse oscillations are ubiquitous in the solar corona, in both
closed coronal loops and open coronal structures (Tomczyk et al.
2007; McIntosh et al. 2011; Anfinogentov et al. 2015). The trans-
verse oscillations commonly observed in coronal loops are iden-
tified as standing kink modes (Aschwanden et al. 1999; Nakari-
akov et al. 1999). Coronal oscillations carry magnetic energy,
which is deposited through the oscillation damping and dissipa-
tion. Commonly proposed physical mechanisms responsible for
the oscillation damping and dissipation include resonant absorp-
tion (Hollweg & Yang 1988; Goossens et al. 2002), phase mix-
ing (Heyvaerts & Priest 1983) and Kelvin-Helmholtz instability
(Terradas et al. 2008; Antolin et al. 2014). Such mechanisms
have been mostly analysed using simplified models of coronal
loops as straight magnetic flux-tubes clearly distinct from the
surroundings. There are several advantages to this approach: It is
straightforward to isolate individual effects and processes linked
to wave evolution as well as to have full control over the param-
eters of the modelled loop. They also allow for very high spatial
resolution, necessary for modelling of certain physical processes
such as resonant absorption (Van Doorsselaere et al. 2004). Such
models, however, also require making several assumptions about

the shape, density structure and morphology of coronal loops
which might be too idealised.

The solar corona is in fact a dynamic environment with
complex density structuring and the coronal magnetic field is
continuously changing and evolving. Models of static and ide-
alised coronal loops therefore neglect this evolution. In order to
account for realistic magnetic field configurations and density
structuring in the solar corona, a more self-consistent approach
to modelling the evolution of coronal structures is necessary.
This can be achieved by taking advantage of realistic convection-
zone-to-corona models (e.g. Carlsson et al. 2016; Cheung et al.
2019; Kohutova & Popovas 2021; Breu et al. 2022). The evolu-
tion of the corona in such models is self-consistently driven by
the dynamics of the lower solar atmosphere. This type of simu-
lations therefore reflects the dynamic and continuously evolving
nature of the solar corona.

One common feature of such simulations is the lack of
clearly-identifiable coronal loops with well-defined boundaries.
In the realistic solar simulations the actual 3D structure of coro-
nal features with increased emissivity in the optically thin coro-
nal emission lines is much more complex, despite appearing as
thin, well-defined loops in forward-modelled emission due to
line-of-sight effects. Such structure of the corona is referred to as
’the coronal veil’, and has been described using a self-consistent
MURaM simulation spanning from the convection zone into the
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corona (Malanushenko et al. 2022). Different codes capable of
producing self-consistent convection-zone-to-corona models, in-
cluding MURaM (Rempel 2016) and Bifrost (Gudiksen et al.
2011), seem to reproduce the ’coronal veil’ structure of the so-
lar corona. The question remains how well does the simulated
corona, which forms in these models, represent the real solar
corona. On one hand, the coronal veil model can explain cer-
tain properties of the coronal loops seen in Extreme Ultraviolet
(EUV) observations such as loop cross-sections that appear to be
constant with height (Aschwanden & Nightingale 2005), which
are difficult to explain otherwise; we note that alternative expla-
nations include a specific density and temperature distribution
across the magnetic field (Peter & Bingert 2012) and the pres-
ence of magnetic twist (Li et al. 2020). It would however also
bring the applicability of coronal loop oscillation models into
question, as most rely on the assumption of coronal loops being
well represented by idealised magnetic cylinders. On the other
hand, the existence and omnipresence of transverse MHD waves
such as kink waves directly points to the existence of struc-
tures acting as waveguides that lead to collective behaviour in
the coronal volume. Also, the occurrence of coronal rain show-
ers (Şahin & Antolin 2022) and long period intensity-pulsations
(Froment et al. 2015), ubiquitous over active regions, indicate
the existence of coronal entities (that we refer as loops or loop
bundles) with similar thermodynamic behaviour.

Most models for wave dissipation rely on modelling coronal
loops as straight magnetic flux-tubes. The mechanism of reso-
nant absorption depends on conversion of a global kink mode
into local azimuthal Alfvén modes in an inhomogeneous layer
with an Alfvén speed gradient at the boundary of a cylindrical
coronal loop (Goossens et al. 2002; Pascoe et al. 2010; How-
son et al. 2019). Similarly, the development of Kelvin-Helmholtz
Instability vortices at the boundary of a transversely oscillating
loop has been mostly studied using models of cylindrical loops
(e.g. Antolin et al. 2014; Karampelas et al. 2017; Howson et al.
2017, 2019) with a distinct density or magnetic interface sepa-
rating them from the background plasma.

The main shortcoming of these models is that the observa-
tional evidence for the proposed damping and dissipation mech-
anisms is largely inconclusive. Signatures reminiscent of reso-
nant absorption have been observed in oscillating prominence
threads (Antolin et al. 2015; Okamoto et al. 2015) and in trans-
versely oscillating spicules (Antolin et al. 2018). To the best of
our knowledge, these are the only observational evidence of such
mechanisms to date. Models for damping of coronal oscillations
would therefore benefit from extending into more realistic se-
tups. Numerical studies using setups which do not correspond to
magnetic cylinders were done for both oscillations in the chro-
mosphere (Leenaarts et al. 2015; Khomenko & Cally 2012) and
in the corona (Matsumoto 2018), the latter two however lack the
self-consistent treatment of the lower solar atmosphere driving
the corona.

In this work we therefore focus on analysing coronal oscilla-
tions in a more advanced numerical setup. We exploit the poten-
tial of convection-zone-to-corona simulations with the radiation-
MHD code Bifrost for coronal studies. We have previously
shown that coronal oscillations are abundant in self-consistent
convection-zone-to-corona simulations and that the detected os-
cillation modes and regimes match those seen in solar observa-
tions (Kohutova & Popovas 2021). Here we analyse the evolu-
tion of an oscillating bundle of magnetic loops which forms in
the simulation and focus on the oscillation damping. Despite the
complex evolution of the bundle, variable length etc. the indi-
vidual magnetic field lines contained in the bundle are found to

exhibit collective evolution during extended periods of time, in-
cluding collective oscillations triggered by impulsive events and
subsequent oscillation damping.

The manuscript is structured as follows. Section 2 describes
the numerical model. Section 3 describes the methods used for
the analysis of the evolution of a bundle of magnetic loops and of
the corresponding oscillatory behaviour seen in the simulation.
In Section 4 we focus on the damping of the oscillating loops
and on the physical mechanism responsible for the damping. In
Section 5 we discuss the results and implications for the coronal
loop models. We summarize our conclusions in Section 6.

2. Numerical model

We analyse the evolution, oscillatory behaviour and damping of
a bundle of magnetic loops in the numerical simulation of a mag-
netically enhanced network spanning from the upper convection
zone to the corona using the Bifrost code (Gudiksen et al. 2011).
This simulation corresponds to the extended run of the pub-
lic Bifrost simulation of the enhanced network (Carlsson et al.
2016). The simulation subset with 2000 s duration analysed in
this work covers the time range from t = 100 s to t = 2100 s of
the extended run of the enhanced network simulation run from
the last snapshot of the public simulation, while having the same
physical setup.

Bifrost is a 3D radiation-MHD code which solves the resis-
tive MHD equations and includes radiative transfer with scatter-
ing in the photosphere and low chromosphere, and parametrised
radiative losses and heating in the upper chromosphere, transi-
tion region and corona. The effects of field-aligned thermal con-
duction and the non-equilibrium ionisation of hydrogen in the
equation of state are included in the simulation.

The physical size of the simulation grid is 24 × 24 × 16.8
Mm and the grid resolution is 504 × 504 × 496. The grid spans
from 2.4 Mm below the photosphere to 14.4 Mm in the corona.
The photosphere is located at z = 0 surface and corresponds to
the (approximate) height where the optical depth τ500 is equal
to unity. The grid spacing is 48 km and uniform in the x and y
direction, while in the z direction it varies from 19 km to 98 km
in order to resolve steep density and temperature gradients in the
lower solar atmosphere.

The simulation domain uses periodic boundaries in the x
and y directions and open boundaries in the z direction. The top
boundary uses characteristic boundaries which transmit distur-
bances with minimal reflection (Gudiksen et al. 2011). At the
bottom boundary the flows are let through and the magnetic field
is passively advected without introducing any additional mag-
netic field into the domain. The average horizontal pressure is
driven towards a constant value with a characteristic timescale
of 100 s, creating a pressure node at the bottom boundary. This
leads to acoustic wave reflection resembling the refraction of
waves in the deeper solar atmosphere, resulting in global radial
box oscillations with a period of 450 s, which are a simulation
counterpart of solar p-modes (Stein & Nordlund 2001; Carlsson
et al. 2016).

The photospheric magnetic field is concentrated in two
patches of opposite polarity and has an average unsigned value
of about 50 G (Fig. 1). The dipolar structure of the magnetic field
creates several magnetic loops in the simulated corona. The con-
vective motions in the lower solar atmosphere lead to magnetic
field braiding. The Ohmic and viscous heating associated with
the braiding together maintain high temperatures in the chromo-
sphere and corona. An artificial heating term is employed for
plasma with temperatures below 2500 K, in order to prevent the
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Fig. 1. Left: Bundle of magnetic loops and the photospheric magnetic field at t = 880 s.Top right: The cut across the density structure at x = 13
Mm intersecting the apex of the magnetic bundle. Bottom right: The cut across the temperature structure at x = 13 Mm. The white points mark
the positions at which the individual loops in the bundle intersect the cuts. An animation of this figure is available online.

0 5 10 15 20
x [Mm]

0

5

10

z
[M

m
]

0 5 10 15 20
y [Mm]

0

5

10

z
[M

m
]

0 5 10 15 20
x [Mm]

5

10

15

20

y
[M

m
]

Fig. 2. A projected view of the magnetic bundle in the xz-plane (left), yz-plane (centre) and xy-plane (right) at t = 880 s. An animation of this
figure is available online.

temperature from dropping too low in regions that are rapidly
expanding. Only few isolated regions in the simulation domain
are affected by this, and the heating in the vast majority of the
domain is self-consistent. Contributing to the heating are small-
scale reconnection events which heat the plasma through a com-
bination of direct Ohmic dissipation and by inducing shear flows
which are then converted into heat by viscous dissipation as well
as dissipating oscillations. In order to ensure numerical stability
the code employs a diffusive operator; this consists of a small
global diffusion term as well as of a directionally-dependent hy-
per diffusion component which enhances the diffusion locally.
Further details of the numerical setup can be found in e.g. Carls-
son et al. (2016); Kohutova et al. (2020).

3. Evolution of a magnetic loop bundle

The corona in the simulation is filled with closed magnetic loops
which can extend up to heights of 10 − 14 Mm. The density
structure of the simulated corona is complex and there are sev-
eral structures with enhanced densities compared to the sur-
roundings. Most of the overdense structures are filled by chro-
mospheric evaporation in response to heating (Kohutova et al.
2020). A cut across the simulation domain shows a lack of loops

with clearly defined cross-sections in the density or temperature
structure (Fig. 1).

The magnetic field configuration in the simulation domain is
driven by the dynamics of the lower solar atmosphere and the
footpoints of coronal structures are shuffled and dragged around
by the convective motions. The magnetic loops in the corona are
therefore continuously evolving and undergoing complex mo-
tions including sideways displacement, oscillatory and torsional
motion and vertical expansion/contraction.

We focus on the evolution of a bundle of magnetic loops lo-
cated in the centre of the simulation domain shown in Fig. 1
reaching a height of around 10 Mm. Due to the evolving nature
of the magnetic field in the simulated corona, in order to obtain
the evolution of such a bundle in three dimensions it is necessary
to trace the evolution of the corresponding magnetic field lines
in the bundle through both time and space. To do this, we use
a field-tracing method described in Leenaarts et al. (2015) and
Kohutova & Popovas (2021).

A magnetic field line is defined as a curve in a 3D space
r(s) parametrised by the arc length along the curve s, for which
dr/ds = B/|B| and is therefore a representation of magnetic
connectivity of the coronal plasma. We trace the evolution of
magnetic field lines by inserting seed points into the simulation
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Fig. 3. The evolution of the height of the individual loops in the bundle
at x = 13 Mm as a function of time. Blue regions indicate the two
instances of damped oscillatory motion in the vertical direction.

domain at the apex of the magnetic bundle. Using the velocity
at the seed point position the seed points are then passively ad-
vected forward and backward in time. The magnetic field is then
traced through the instantaneous seed point position in order to
determine the spatial coordinates of the traced field line at every
time-step. The accuracy of this method is given by the size of
the time-step between two successive simulation snapshots (i.e.,
1 second in this case). We find that the method works well for 10
s step-size and there are no major differences in field-line evo-
lution between 1 s and 10 s time-step size. The 10 s time-step
size is therefore used for the field line tracing in the following
analysis. We note that this approach requires that the evolution
is smooth and there are no large-amplitude velocity variations
occurring on timescales shorter than the size of the time-step.
Similarly, in the instances where magnetic reconnection occurs,
this approach fails and the tracing leads to a jump in the field-line
evolution. This is, however, not the case in the coronal part of the
magnetic bundle during the analysed time-period. We note there
are 2 instances of rapid transverse displacement occuring close
to the foootpoints of the traced loops at t = 830 s and t = 1100 s
caused either by an external perturbation or change of magnetic
connectivity in the lower solar atmosphere. These however do
not lead to discontinuities in the evolution of physical quantities
in the coronal part of the analysed loops.

The magnetic bundle is shown in different projections in Fig.
2 with the bundle evolution shown in the online animation. The
individual magnetic loops display a large degree of collective be-
haviour and the magnetic bundle behaves as a coherent structure
during most of the duration of the simulation. The footpoints
of the magnetic bundle are not static, and the bundle is continu-
ously changing and evolving. The lengths of the individual loops
in the magnetic bundle change significantly over the duration of
the simulation, sometimes on a timescale of minutes.

4. Oscillations and damping

Full spatial coordinates of the magnetic loops in the bundle at
any point in time enable us to obtain the evolution of the physical
quantities along the loops, including both scalar and vector quan-
tities. To aid the oscillation analysis, we decompose the velocity
vector into three velocity components relative to the direction
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Fig. 4. Top: The evolution of the longitudinal (green), normal (orange)
and the binormal velocity component (blue) at the apex of the bundle.
Middle: The evolution of the Joule volumetric heating rate (red dashed),
the viscous volumetric heating rate (red dotted) and the temperature
(black) at the apex of the bundle. Bottom: The evolution of the average
length (blue) and the Alfvén velocity at the apex of the loops in the
bundle. Blue regions indicate the time-range corresponding to the two
oscillations.

of the magnetic field, vT, vN and vR. The longitudinal velocity
vT = v·T corresponds to the velocity component aligned with the
tangent vector of the magnetic field line given by T = B/|B|. The
normal velocity vN = v·N corresponds to the velocity component
along the normal vector of the field line given by N = dT

ds /|
dT
ds |.

In the case of a closed magnetic loop, vN represents the motion
in the plane of the loop and perpendicular to the loop tangent.
Finally the third velocity component aligned with the binormal
vector is given by vR = v · R where R = T × N. In the case of a
closed magnetic loop, vR corresponds to transverse motion per-
pendicular to the plane of the loop and to the loop tangent. Unit
vectors T, N, and R together form an orthogonal coordinate sys-
tem known as the Frenet frame of reference. Such coordinate
system is well-suited to analysing oscillations in complex 3D
magnetic field geometries (e.g., Carlsson & Bogdan 2006; Fe-
lipe 2012; Leenaarts et al. 2015; González-Morales et al. 2019;
Kohutova & Popovas 2021).

The collective behaviour of the loop bundle is apparent from
Fig. 3, which shows the evolution of the height of the individ-
ual magnetic loops in the bundle at x = 13 Mm. The evolution
shows two clear instances of oscillatory behaviour, starting at
t = 400 s and t = 1100 s and lasting about 400 s in both cases,
as indicated marked by blue regions in Figs. 3 and 4. The os-
cillations are damped and occur in a plane perpendicular to the
bundle axis. From the evolution shown in animations of Figs.
1 and 2 it is clear that these oscillations correspond to a trans-
verse standing mode of the bundle. The point of maximum os-
cillation displacement and hence maximum oscillation velocity
amplitude lies close to the apex of the bundle with the bundle
footpoints acting as nodes of the standing oscillation. The oscil-
lations are triggered by impulsive events in the corona associated
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Fig. 5. Top: The evolution of the detrended normal velocity component at the bundle apex averaged over the oscillating fieldlines in the bundle.
Best-fit is shown in red. Middle: The evolution of the Joule (dashed line) and viscous volumetric heating rate (dotted line) at the bundle apex.
Bottom: Temperature (black), the x-component of the vorticity averaged in the vicinity of the bundle apex (solid blue line) and the z-component
of the vorticity averaged in the vicinity of the right bundle footpoint (dotted blue line). The time intervals shown correspond to the time ranges
highlighted in blue in Figs. 3 and 4.

with a peak in the Joule heating and subsequent large-scale dis-
placement of the analysed bundle.

We analyse the evolution of the vR and vN components by
averaging the velocity components over the oscillating loops in
the bundle at the loop apex, which we define as the point halfway
between the two footpoints of the loop (Fig 4). The oscillations
are most clearly detectable in the vN component. In both cases
the oscillations follow large scale perturbations of the magnetic
bundle.

To remove the large-scale trends in the vN evolution corre-
sponding to a bulk motion of the bundle, the oscillation time-
series are detrended by subtracting a best-fit second-degree poly-
nomial. The time-series are then fitted with the function

v(t) = v0 exp
(
−

t
τ

)
sin
( 2πt

P + kt
− Φ

)
(1)

which includes both the oscillation damping and linear change
in the oscillation period (Fig. 5). Here v0 corresponds to the ve-
locity amplitude, τ is the decay time, P is the oscillation period,
k is a parameter controlling the linear change in period and Φ is
the phase. We find that the initial velocity amplitudes are 10 km/s
and 16 km/s, these are damped with decay times of 176 s and 198
s respectively, corresponding to roughly 3 oscillation periods be-
ing detectable before the oscillation decays. The periods for the
first and second oscillation are 177 s and 191 s respectively. The
oscillation periods in the both cases decrease over the duration of
the oscillation; by approximately 15 s for oscillation 1 and 100 s
for oscillation 2. The Joule and viscous volumetric heating rates

shown in Fig. 5 are also averaged over the oscillating loops at the
apex bundle. Over the duration of oscillations the heating rates at
the apex of the bundle are variable, but overall have an increasing
trend during the later stages of both oscillations. Similarly, the
average temperature at the bundle apex increases by around 0.5
MK over the duration of the oscillation in both cases. Finally, we
show the evolution of the absolute value of the x-component of
the vorticityωx in the y−z plane at x = 13 Mm, averaged over the
area surrounding the bundle apex. The ωx-component is chosen
because the axis of the loop at the apex is roughly aligned with
the x-axis and the oscillatory motion mostly occurs in the plane
perpendicular to the loop axis. During the first oscillation, the
vorticity in the surroundings of the oscillating bundle increases
to reach the maximum value around 170 s after the oscillation
onset, followed by a gradual decrease to the pre-oscillation val-
ues. In the later case, the vorticity in the vicinity of the bundle
apex decreases during the entire oscillation duration. For the sec-
ond oscillation we also calculate the evolution of the ωz vorticity
component at the right footpoint at the height of 3 Mm, as this
undergoes strong transverse displacement. Similar vorticity peak
as at the apex position of the first oscillation can be seen in the
evolution here.

To further understand the evolution of the vorticity close
to the oscillating bundle, we show the velocity field given by
vyey + vzez in the y − z plane at x = 13 Mm which is nearly per-
pendicular to the bundle axis and in the plane of the bundle os-
cillations (Fig 6). We calculate the velocity field before the onset
of the oscillation, during the oscillation and at the end of the os-
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Fig. 6. Top: The vz velocity component and the corresponding velocity field streamlines in cuts parallel to the y−z plane at x = 13 Mm shown before
the oscillation onset (left), during the oscillation (middle) and at the end of the oscillation (right). Bottom: Same as above but for oscillation 2. The
red cross markers correspond to the positions at which the individual loops in the bundle intersect the cut. The locations of the enhanced shear
in the vz velocity component correspond to strong counter-directional flows. In both cases several vortices develop in the vicinity of oscillating
structures.
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Fig. 7. Top: The Alfvén speed and the corresponding velocity field streamlines in cuts parallel to the y − z plane at x = 13 Mm shown before the
oscillation onset (left), during the oscillation (middle) and at the end of the oscillation (right). Bottom: Same as above but for oscillation 2. The
red cross markers correspond to the positions at which the individual loops in the bundle intersect the cut.

cillation. The shear flows are abundant in the vicinity of the bun-
dle, this shows as counter-directional large magnitude flows in
the vz component of the velocity. We find that the velocity shear
is strongest before and during the oscillation. Associated with
this is the development of several vortices visible in the velocity
streamlines in the close proximity of the oscillating structures.
The velocity shear in this region weakens and the vortices mostly
disappear once the oscillations have decayed. The vortices visi-
ble in the velocity streamlines are always located in the regions
with strong velocity shear, suggesting they originate due to the
development of the Kelvin-Helmholtz instability. The size of the
vortices is of the order of few Mm, which matches the transverse
length scale in the Alfvén speed variation (Fig. 7), as predicted
by the straight flux-tube models (Antolin & Van Doorsselaere

2019). The Kelvin Helmholtz instability in magnetised plasmas
is inhibited by the magnetic tension, in this case however, the di-
rection of the magnetic field is perpendicular to the flow velocity
vector due to the oscillatory motion. The vortices can therefore
develop without distorting the magnetic field, which would lead
to stabilizing magnetic tension (Hillier et al. 2019; Barbulescu
et al. 2019). We note that both presence of vortices and shear
flows will contribute to the increased values of ωx in the anal-
ysed region.
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5. Discussion

5.1. Oscillation parameters

Displacement and velocity amplitudes in both instances of bun-
dle oscillations are in agreement with the values typically ob-
served in active region coronal loops (e.g. White & Verwichte
2012), although this also depends on the type and magnitude of
the perturbation responsible for the excitation of the oscillation.
The detected oscillation periods are also within the range com-
monly seen in the observations (Nechaeva et al. 2019). We note
that the oscillation periods decrease over the duration of the os-
cillation in both cases. This can be explained by changing phys-
ical properties in the magnetic loop bundle, such as changing
loop length or distribution of the plasma along the loop. Such
evolution is not surprising in a dynamic environment like this, as
the length of the oscillating loops as well as the values of Alfvén
speed can change on timescales comparable to the duration of
the oscillation. The expected values of the oscillation periods es-
timated from P ∼ 2L/vA using the values for the average length
and the Alfvén speed at the apex of the oscillating bundle loops
at the beginning of each oscillation are 205 s and 175 s for os-
cillation 1 and 2 respectively. This roughly agrees with the de-
tected initial periods, the change in the loop properties during
the oscillation duration will however affect the oscillation peri-
ods. Changes in oscillation period over the duration of the oscil-
lation due to changes in properties of the oscillating loop have
both been seen in observations and been reproduced by numer-
ical modelling (Kohutova & Verwichte 2017; Verwichte & Ko-
hutova 2017; Su et al. 2018). Such shift in oscillation properties
has a diagnostic potential using coronal seismology methods. A
more detailed test of coronal seismology methods in convection-
zone-to-corona simulations involving synthetic observables will
be addressed in a follow-up study. Oscillation damping times are
comparable to oscillation periods in both cases and in agreement
with the observations of damped transverse oscillations, which
are typically observed to decay within 3-4 oscillation periods
(Goddard et al. 2017). We do not analyse the detailed profile of
the oscillation damping, that is whether the damping profile is
better represented by an exponential profile, Gaussian profile or
a transition from Gaussian to an exponential profile as described
in Hood et al. (2013); Pascoe et al. (2016). Such a model is based
on an assumption of a monolithic cylindrical coronal loop with
a non-homogeneous boundary layer at the loop interface, which
is not representative of coronal structures in the self-consistent
convection-zone-to-corona simulations.

5.2. Collective behaviour

The bundle of magnetic loops in the simulation does not oscil-
late in isolation. It is in fact difficult to isolate the oscillating
structures from a static, background plasma, as there is a large
degree of collective behaviour among the structures in the sim-
ulated corona. The evolution of the individual magnetic loops in
the bundle is not identical, but averaging the physical quantities
at the bundle apex gives us the overall evolution of the bundle.
This implies that care should be taken when modelling individ-
ual coronal loops as isolated structures. As the coronal loop evo-
lution is coupled to the environment, the arcade model described
by Hindman & Jain (2021) is more representative of the evolu-
tion of the coronal structures in our simulation. The observations
also suggest that the oscillations of individual coronal loops are
often coupled to the oscillation of nearby magnetic structures

and rarely occur in isolation (Verwichte et al. 2004, 2009; Jain
et al. 2015).

Regardless of the geometry, oscillating large scale structures
create shear flows that lead to Kelvin-Helmholtz instability and
the subsequent development of vortices if the instability is not
inhibited by the magnetic tension. The shear created by large-
scale translational motions also contributes to the development
of Kelvin-Helmholtz instability, provided the direction of the
motion is perpendicular to the coronal magnetic field (Hillier
et al. 2019; Barbulescu et al. 2019). The development of vor-
tices in our simulation may therefore be a result of a com-
plex interplay of oscillatory and translational motions of coronal
structures. The traditional models of Kelvin-Helmholtz unstable
loops (e.g. Terradas et al. 2008; Antolin et al. 2014; Karampelas
et al. 2017) assuming well-defined oscillating cylindrical loops
embedded in a static plasma are however too idealised, as there
are no loops with clearly defined cross-sections in our simula-
tion. Because of a lack of clear loop boundaries the vortices are
instead developed at the locations of maximum velocity shear.

5.3. Oscillation damping and dissipation

We stress the importance of the oscillation damping time τ as
this corresponds to the rate at which the wave energy is either
converted into another wave mode or dissipated. Empirical scal-
ing of the damping time with the loop oscillation period is com-
monly cited as an indirect evidence for resonant absorption being
the primary mechanism responsible for loop oscillation damp-
ing (see e.g. review by Nakariakov & Kolotkov (2020)). It has
however been argued that the use of such scaling laws for dis-
criminating between different damping mechanisms is question-
able due to the inherent dependence of the damping time on the
loop parameters (Arregui et al. 2008). We note that traditionally
used scaling laws for resonant absorption assume large density
contrast between the loop and the surrounding plasma (Ofman
& Aschwanden 2002), which is not the case in our simulation,
as shown in Fig. 1. Oscillation damping times are further ex-
pected to depend on the magnetic Reynolds number given by
Rm = UL/η, where U is a typical velocity scale, L is a typical
length scale and η is magnetic diffusivity. Rm varies in the sim-
ulation as Bifrost uses η(r, t) that is spatially and temporally de-
pendent; Rm in the simulation is however several orders of mag-
nitude smaller than the estimated values in the solar corona.

We note that the traditional models for oscillation damping
due to resonant absorption rely on a presence of an inhomoge-
neous layer at the boundary of a thin cylindrical loop with an
Alfvén speed gradient (Ruderman & Roberts 2002). This is not a
valid approximation for the loops in our simulation, event though
Alfvén speed gradients are abundant in the simulated corona. We
see no clear evidence of mode conversion in the oscillating bun-
dle (that is, conversion to clearly identifiable spatially localised
azimuthal oscillations); instead, the evolution of the physical
quantities at the apex of the loop bundle suggests that the wave
energy is dissipated into heat through the development of shear
flows, leading to an increase in the viscous and resistive dissi-
pation over the duration of the oscillation (in MHD models, the
resistive and viscous dissipation terms are a parametrisation of
processes operating on kinetic scales). Velocity shear leads to de-
velopment of Kelvin-Helmholtz vortices which are detectable in
the velocity field in the plane perpendicular to the bundle cross-
section. The increase of the ωx component in the vicinity of the
bundle apex during the first oscillation decay suggests that the
shear due to the oscillatory motion drives the development of
vortices which then dissipate, leading to subsequent ωx decrease
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effectively explaining oscillation damping and dissipation. How-
ever, the absence of such a clear vorticity peak at the loop apex
during the second oscillation decay suggests the picture in this
case is not as clear and multiple processes can contribute to the
oscillation damping. The evolution of loop oscillations might be
further affected by the motion of the loop footpoints, as these are
not static. We note that the wave dissipation is only one of the
several possible mechanisms contributing to the large tempera-
ture increase seen at the apex of the oscillating loops.

The onset of Kelvin-Helmholtz instability in models of trans-
versely oscillating loops is linked to the development of turbu-
lence leading to the formation of small scales which allows for
fast dissipation of the wave energy (Hillier et al. 2020). For a
loop to be considered truly ’turbulent’ it is however necessary to
demonstrate a non-linear cascade of energy to small scales. We
cannot draw any conclusions about the presence of turbulent be-
haviour/lack thereof in our simulation due to limits posed by spa-
tial resolution as well as by the magnetic diffusivity and viscos-
ity. We also note that low Reynolds numbers in self-consistent
MHD simulations artificially restrict the cascade to small scales
(Howson et al. 2017).

Kelvin-Helmholtz vortices developed during oscillation
damping have also been proposed as being responsible for coro-
nal oscillations appearing as decayless in certain emission lines
(Antolin et al. 2016). In such model, however, the KHI vortices
were formed at much smaller spatial scales due to the sharp den-
sity (and Alfvén speed) contrast at the loop boundary which is
not the case for the loop bundle analysed in this work.

5.4. Implication for coronal loop models

We find that oscillation parameters and evolution observed in
coronal loops are reproduced by self-consistent simulations
which include complex magnetic field geometry and density
structuring and which do not contain well-defined coronal loops.
This approach provides insight into how does the oscillating loop
bundle actually evolve in three dimensions, including the de-
tailed evolution of the magnetic field, into the degree of collec-
tive oscillation of the surrounding plasma and into the physical
mechanisms associated with the oscillation damping and dissi-
pation. This type of dynamics is impossible to capture by ide-
alised straight flux tube models. This might have widespread im-
plications for the accuracy of the coronal seismology methods,
which are mostly based on cylinder approximations for coro-
nal loops. Even recent numerical studies of the evolution of ini-
tially homogeneous coronal loops in response to transverse mo-
tions suggest that the highly idealised picture of coronal loops as
monolithic plasma cylinders is unlikely to be realistic in the first
place (Antolin & Van Doorsselaere 2019). The question remains
how realistic our current self-consistent simulations really are
when it comes to reproducing detailed characteristics of the so-
lar corona. However, despite the complex collective behaviour in
such self-consistent simulations some results from simple coro-
nal loop models are reproduced, namely the generation of the
Kelvin-Helmholtz vortices by the transverse motions. The sim-
ple coronal loop models provide a lot of value for understanding
fundamental physical processes at play. Caution should however
be taken when drawing conclusions from observations whether
the assumptions made in the models are still applicable in the
analysed scenario. Combination of simple and self-consistent
models is necessary for detailed understanding of the oscillatory
behaviour in the corona.

Finally, we note that the length of loops we can simulate in
this type of setup is limited by the size of the simulation domain,

with the maximum length of magnetic loops in the simulation
used in this work being 20 - 30 Mm. This affects the parameter
space that is accessible by such models, as several oscillation
parameters scale with loop length. Larger domains are therefore
needed for more accurate one-to-one comparison of oscillation
parameters with observations.

6. Conclusions

For the first time, we analysed the damping of coronal oscilla-
tions using a self-consistent 3D radiation-MHD model of the
solar atmosphere spanning from the convection zone into the
corona, the associated oscillation dissipation and heating, and
finally the physical processes responsible for the damping and
dissipation. The simulated corona formed in such a model does
not depend on any prior assumptions about the shape of the coro-
nal loops. Using magnetic field tracing we analysed the evolution
of a bundle of magnetic loops in the centre of the simulation do-
main. The magnetic bundle shows dynamic evolution and a large
degree of collective behaviour of the individual loops in the bun-
dle. We find that the bundle of magnetic loops shows damped
transverse oscillations in response to perturbations in two sepa-
rate instances with oscillation periods of 177 s and 191 s, veloc-
ity amplitudes of 10 km s−1 and 16 km s−1 and damping times
of 176 s and 198 s, respectively. The oscillation parameters and
evolution observed are in line with the values typically seen in
observations of coronal loop oscillations. The oscillation peri-
ods decrease in both instances during the oscillations. We find
that transverse coronal oscillations lead to the development of
velocity shear in the simulated corona resulting in the formation
of vortices with sizes around one Mm seen in the velocity field
caused by the Kelvin-Helmholtz instability, contributing to the
damping and dissipation of the transverse oscillations into heat.
Assuming the structure of the corona in the self-consistent mod-
els is indeed realistic, our models of monolithic and static coro-
nal loops with constant lengths might need to be reevaluated in
favour of more realistic models accounting for loop properties
changing with time and relaxing the assumption of highly ide-
alised waveguides.
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